Economic, Environmental, International, Life as it is, Technical

Who will pull us out of the climate change conundrum?

Every year since 1995, our leaders or their representatives met at the so-called Conference of Parties, debating climate change, global warming in particular. Over time, the conferences’ goal has become what is politically possible, not what is environmentally desirable. Hence, the emphasis has shifted from reducing emissions of carbon dioxide to helping nations adapt to whatever the future climate might look like. While adaptation is necessary for survival on a planet ravaged by the vagaries of global warming, it also means throwing in the towel against the fight to tackle climate change effectively.

The outcomes of these conferences clearly indicate that we are backing away from a disaster of our own making by surrendering to the whims of powerful people beholden to lobbyists, special interest groups and climate change deniers. Who will, therefore, pull us out of the climate change conundrum, so that our future generations can stay in a climate-safe planet? How can we remain hopeful while facing the growing, irrefutable evidence of devastating climate-induced changes around us?

On March 15, 2019, hundreds of thousands of schoolchildren all over the world, from the South Pacific to the edge of the Arctic Circle, answered the above questions, loud and clear. They skipped classes to protest what they see as the failures of their governments to take tough actions against global warming. Although most of the protesters are under the voting age, they nevertheless want to have a say in the politics of climate change. Hence, they are boldly challenging the stewards of “their” planet who have the ability to make the real differences needed right now with regard to climate change.

The protest was inspired by a 16-year-old Swede, Greta Thunberg, to express children’s frustration with older generations’ laissez-faire attitude towards climate change. She kicked off a global movement after last summer’s record heat wave in northern Europe and forest fires that ravaged swathes of her country up to the Arctic. Since August 10, 2018, she has been sitting outside the Swedish parliament every Friday, now known as Fridays for Future, protesting inaction by adults. She recently gave a speech to climate negotiators in Switzerland and told them, “I want you to panic. I want you to feel the fear I feel every day. And then I want you to act.”

Fridays for Future was also observed in New York City, where students at dozens of schools across the five boroughs stayed away from their classroom and took to the streets. They hosted multiple rallies in front of the City Hall, Columbus Circle, Bronx High School for Science, Columbia University, American Museum of Natural History, and elsewhere. All of them chanted, “Money won’t matter when we’re dead.” “Sea levels are rising and so are we.” “I’m not showing up for school because adults aren’t showing up for climate.”

They spoke about the importance of schools teaching students about climate change from a young age. “If we don’t learn about it, we might believe the things that are lies, that it’s a hoax… They can’t just leave a falling apart planet to us. We only have so much time to fix it, and we have to fix it while we still can, because by the time we’re in power we can’t fix it,” said the 13-year old Rachel Entin-Bell, who was protesting at the Washington Square Park.

The star of the protest was a 9-year-old kid, Zayne Cowie, who sat in front of the City Hall with his little sister on his lap holding a sign that says “Climate Strike”. “Climate change is happening faster than we can react. Well, we could react fast enough but nobody cares,” he said. Sadly, we are living at a time when a 9-year-old is more knowledgeable about climate science than the current occupant of the White House!

Starting in December 2018, following in the footsteps of Greta, Zayne opted out of attending Friday classes at his school and instead sit in front of the City Hall—rain, snow or shine—reading from the children’s book of verse “Goodbye, Earth.” The first two stanzas are:

The World is big and I am small.

One day I wish to see it all.

Pacific islands, northern Lights,

Himalayas, desert nights.

The World is big and I am small.

The Earth’s in trouble, hear her call.

Me and my nine-year-old peers

Have now lived through its hottest years.

Indeed, when children come out on the streets to protest climate change, we know that it is high time for adults to wake up and act decisively. Unfortunately, adults are caught up in their egotistic needs of power, accumulation of wealth, comfort and socio-economic status, leaving very little time to care about future generations.

Ironically, children like Zayne, Greta, Rachel and others are the first generation who are least responsible for the 410 parts per million concentration of carbon dioxide in the atmosphere today, but will face most of the catastrophic consequences from it. They are coming of age when the window to ward off this nightmare scenario is rapidly shrinking.

Many older adults have been warning for decades that our future generations will suffer for our greed, selfishness and inertia from continued inaction. Now, those future victims are raising their voice to try and shape the agenda. They are the bastions of hope emerging around the world. Their message: No more business as usual. We need to act as though our future and the future of all life on this planet depends on what we do, because it does.

How did adults react to the protests? In New York City, 16 protesters have been arrested for blocking traffic in front of the American Museum of Natural History. They were charged for disorderly conduct. Shame on us, who are doing very little at addressing climate change, leaving the consequences to be dealt with by younger generations, yet arresting them for raising their voices against climate change.


The writer, Quamrul Haider, is a professor of physics at Fordham University, New York

Advanced science, Bangladesh, Economic, Environmental, International, Political, Technical

Welcome to the age of climate change

Our planet is under tremendous stress now. During the last week of January, major cities in the US Midwest and Northeast were colder than some regions in Antarctica. Temperature in Minneapolis dipped as low as negative 32 degrees Celsius, with the wind chill reaching negative 47. Grand Forks in North Dakota has seen the lowest wind chill at negative 54 degrees. As many as 21 cold-related deaths have been reported so far.

Temperatures during the first week of February rose on average by a whopping 40-50 degrees. However, the reprieve is going to be short-lived as the frigid temperatures are expected to return later this month.

Although the scientifically challenged US president wants global warming to “come back fast”, someone should whisper into his ears that extreme cold spells in the Northern Hemisphere are caused, at least in part, by global warming. Under normal circumstances, cold air mass sits above the poles in an area called the polar vortex. Emerging research suggests that a warming Arctic distorts the vortex in the North Pole, so that instead of staying where it belongs in winter, closer to the Arctic Circle, the air moves down south into continental United States. Hence, the brutal cold spells. With the rapid warming of the Arctic, the effects of the polar vortex could become more frequent and severe, bringing about more intense periods of cold snaps and storms.

While we are trying to stay warm, down under, Australians are getting baked by record-breaking heat. Over two days in November, temperatures exceeding 40 degrees in Australia’s north wiped out almost one-third of the nation’s fruit bats, also known as spectacled flying foxes. Scores of brumbies—Australian wild horses—in the Northern Territory have fallen victim to the January heatwave, which soared to a high of 47 degrees. They died from starvation and dehydration. More than a million fish have perished in a river in New South Wales as the water temperature surpassed their tolerance limit.

Last summer, many nuclear power plants in Europe halted operation because overheated river water could no longer cool down the reactors. And like many Asian megalopolises, Bangkok is choking on air pollution. Water cannons are used to alleviate the smog that has shrouded the city for weeks.

A series of droughts with little recovery time in the intervals has pushed millions to the edge of survival in the Horn of Africa. Bangladesh is staring at an unprecedented migration problem as hundreds of thousands face a stark choice between inundated coastal areas and urban slums.

California saw its most ruinous wildfires ever in 2018, claiming more than 100 lives and burning down nearly 1.6 million acres. There have even been freak blazes in Lapland and elsewhere in the Arctic Circle. There is ample data to suggest that climate change is the biggest driver of out-of-control wildfires. In colder regions, an unusually warmer climate leads to earlier snowmelt and, consequently, spring arrives earlier. An early spring causes soils to be drier for a longer period of time. Drier conditions and higher temperatures increase not only the likelihood of a wildfire to occur, but also affect its severity and duration.

Typhoon Mangkhut with maximum sustained winds of 120 miles per hour roared across the Philippines and China in September 2018, triggering landslides, extensive flooding and killing some 100 people. The ferocity of the typhoon matched that of Hurricane Florence on the other side of the globe that pummelled the Mid-Atlantic Coast of the United States just four days earlier. The wind speed was 130 miles per hour and the hurricane claimed 36 lives.

Cutting-edge research by climate scientists indicates that the intensity of hurricanes and typhoons is closely connected to global warming. Higher sea levels due to melting of glaciers and Greenland’s ice sheets and warm water give coastal storm surges a higher starting point. Additionally, because hurricanes and tropical storms gain energy from water, their destructive power intensifies. Moreover, as the Earth has warmed, the probability of a storm with high precipitation levels is much higher than it was at the end of the twentieth century.

Besides raising the sea level, climate change is also modifying oceans in different ways. According to a study published in Nature Communications in January 2019, as climate change gradually heats oceans around the globe, it is also making the ocean waves stronger and more deadly.

Climate change is ravaging the natural laboratory in the Galápagos Islands, one of the most pristine and isolated places in the world, where Charles Darwin saw a blueprint for the origin and natural selection of every species, including humans. Today, because of the more frequent El Niño events that have come with warming of the seas, the inhabitants of the islands are trying to cope with the whims of natural selection.

Welcome to the age of climate change! These are just a few examples of multiple weather-related extremes occurring all over the world. They beg the question: Can human beings survive the climate crisis? The answer depends on what we do in the next 10-20 years. It will determine whether our planet will remain hospitable to human life or slide down an irreversible path towards becoming uninhabitable.

At the World Economic Forum in Davos last month, the UN Secretary General Antonio Guterres said, “If what we agreed in Paris would be materialised, the temperature would rise more than three degrees.” He is finally seeing eye-to-eye with the mainstream scientists and essentially declared the 2015 Paris Accord a dead deal.

If global temperature indeed increases by more than three degrees, summer heat would become unbearable. In particular, temperatures and humidity levels in cities that are already scorching hot would rise to levels that the human body simply cannot tolerate, researchers warn. More importantly, it would trigger a positive greenhouse effect feedback that would eventually push our planet, according to Guterres, “dramatically into a runaway climate change….” Once the runaway greenhouse effect starts, then Paris-like accords, conferences of parties, rulebooks for adaptation to climate change, or going cold turkey with fossil fuels won’t be able to reverse the situation.

Runaway greenhouse effect is not a “Chinese hoax.” Several billion years ago, Venus was cooler than what it is now and had an abundance of water in oceans overlain by an oxygen-rich atmosphere. The current hellish condition on Venus where the surface temperature is a blistering 460 degrees Celsius was caused by runaway greenhouse effect.

Thus, without a significant adjustment to how we conduct our lives, the possibility of Venus syndrome is quite high. In this scenario, our planet would still keep on spinning, but as the fourth dead ball of rock devoid of life.


Quamrul Haider is a Professor of Physics at Fordham University, New York.

Economic, Environmental, International, Technical

COP24: All noise, no signals

Climate change has become a political football in the last 20 years. The “un”-stable American genius once mocked climate change as a Chinese hoax. Now he believes “something’s changing,” but it is “not man-made.” Other heads of state and government talk and act as if climate change will follow whatever is agreed upon by them at various conferences. However, they do not realise that the Earth’s climate system is highly complex, and complex systems do not respond to whims.

Since 1995, when the first Conference of Parties (COP) took place in Berlin, world leaders or their representatives met 24 times to address the burning issue of global climate change. At these conferences, they debated about steps that should be taken to reduce carbon dioxide emissions, ignoring other greenhouse gases, some of which are more potent than carbon dioxide. Some of them argued that atmospheric data is incomplete and computer models used by climate scientists are only as reliable as the data fed into them. Others contended that we are trying to measure small changes in a large, complex system and extrapolating those changes into the future is always tricky. The conferences usually ended without any unified strategies to mitigate the dangerous impacts of climate change. In the meantime, our planet is heating up, causing extreme weather-related events that would create, in a very short order, a new planet, still recognisable, but violently out of balance.

The recently concluded COP24 held at Katowice, the coal capital of Poland, was attended by thousands of negotiators representing different countries as well as scientists, students, environmental activists, business groups, non-governmental organisations and journalists. Conspicuously absent were heads of state of some of the countries, most notably the United States, the United Kingdom, Germany, China and India, which emit carbon dioxide in copious amounts. Many activists from developing nations hardest hit by the impacts of climate change were denied visas to attend the conference. Some attendees deemed undesirable by the Polish authorities were either deported or forcibly kept away from the conference site.

As expected, disagreements at the conference weren’t really about climate change and global warming. Rather, they were about protecting the national interests of the industrialised countries. To that end, they interpreted scientific results in a way that would bolster, instead of undermine, the support of their political base. Others, including delegates from Bangladesh and small island nations that are least responsible for causing global warming but most vulnerable to its devastating effects, urged the participating nations to adopt a collective action plan to keep the overall temperature rise below two degrees Celsius before the end of this century.

After two weeks of acrimonious debate, it was déjà vu—failure to produce a substantive framework for policy which would offer coherence and consistency as to how the global community should cope with the long-term challenges of climate change. The only noteworthy piece of document that COP24 produced is a Rulebook for putting the 2015 Paris Climate Accord into practice. Suffice it to say, the guidelines outlined in the Rulebook could be portrayed as stopgap measures, for they only treat the symptoms and neglect the underlying root causes of climate change. Therefore, they won’t be enough to stop global warming from reaching critical levels.

There are other takeaways from the conference, too. For the umpteenth time we were reminded—this time by the UN Secretary General—that “climate change is the defining issue of our time, and we are at a defining moment.” His statement was rephrased by Poland’s President who said that “climate change constitutes one of the gravest threats of our time.” British environmentalist Sir David Attenborough was one of the few moral voices who mentioned that besides human activity, human inaction is also responsible for climate change. He warned that our inaction would lead to “the collapse of our civilisations and the extinction of much of the natural world.”

Kuwait, Russia, Saudi Arabia and the United States “noted”, but did not “welcome”, the scientific evidences related to climate change. Supported by the host country, where almost 85 percent of electricity is produced from coal, they expressed reluctance to phase out the use of fossil fuels.

The only heartening takeaway from COP24 was the participation of the new generation including school-going children. In particular, Greta Thunberg, a 15-year-old Swedish girl and one of the speakers, castigated the world leaders accusing them of abdicating their responsibility to address adequately the problems arising from climate change. She did not mince words in pointing out that “our biosphere is being sacrificed so that rich people in countries like mine can live in luxury.”

Greta’s speech should motivate us to set aside zero-sum game thinking, and think more about how to work together to achieve a greener world. Specifically, we have to fully transition to renewable energy, draw down carbon dioxide, relocate the displaced millions, farm and grow more sustainably, and rejuvenate Earth’s ecosystems. Most importantly, we have to build a society that seeks balance between human and ecological needs, thereby ensuring that we, our future generations, and other species can survive and live well. Failure to do so would result in a disaster of epic proportions.

Achieving the above-mentioned goals would require cooperation between nations on a much grander scale than envisioned at COP24. The Earth Summit held in Rio de Janeiro in June, 1992 is a good example, although not an ideal one. Nevertheless, the summit produced several agreements on climate change, deforestation, species protection and sustainable development. Participants also published a massive document called Agenda 21, which outlines thousands of ways to solve many of the world’s environmental problems caused by climate change.

Finally, in physics, there is a phenomenon known as “resonance” that is produced by sympathetic vibration. For example, when we turn the knob of a radio to tune to a station, we are changing the frequency of the electrical circuit of the receiver to make it equal to the transmission frequency of the radio station. When the two frequencies match, there is resonance and we can hear clearly broadcasts from the station. If the frequencies do not match, we hear only noise. At COP24, there were nearly 200 participating nations operating at discordant frequencies. Hence, there was no resonance, only noise without any discernible signal.

Quamrul Haider is a professor of physics at Fordham University, New York.

Advanced science, Environmental, International, Technical

Potential Carbon Capture Techniques

Carbon capture and storage

The Intergovernmental Panel on Climate Change (IPCC) concedes that limiting the rise in global temperature below two-degree Celsius before the end of this century is impossible without reducing emission of carbon dioxide to zero by 2050. However, the majority of scientists agree that zero emission alone will not solve the problem of global warming. That is because we have done too much damage already to the climate to avoid warming just by halting the burning of fossil fuels. Besides, the current concentration of carbon dioxide in the atmosphere would keep on trapping heat for hundreds of years.

So, what’s the way out? Despite the bleak outlook, we can still limit global warming to under two degrees by going carbon negative together with zero emission. Carbon negative means removing more carbon dioxide from the atmosphere than adding to it.

The technique that is currently used to remove carbon dioxide and potentially other greenhouse gases from the atmosphere independent of its source is known as Direct Air Capture (DAC). Within the context of DAC, carbon dioxide is sucked out of the ambient air with a giant network of fans. Once carbon dioxide is trapped, it is liquefied and transported through pipelines and stored underground, often in natural reservoirs like depleted oil wells that can hold the gas for millions of years. There is also growing interest in storing the liquid carbon dioxide in saline aquifers due to their enormous storage capacity.

The companies that are at the forefront of DAC technology are Carbon Engineering in Vancouver, Climeworks in Zurich and Global Thermostat in New York. The Mercator Research Institute on Global Commons and Climate Change in Berlin claims that the company’s DAC plant is the first of its kind to operate on an industrial scale.

Zero or near-zero emission of carbon dioxide could be achieved by using the Carbon Capture and Storage (CCS) technology. The process is similar to DAC technology except that CCS traps carbon dioxide from the exhaust stream of power plants, thereby preventing it from entering the atmosphere.

There are a handful of coal-fired power plants around the world that are using the CCS technology. The largest such plant, Petra Nova in Texas, captures around 5,000 tonnes of carbon dioxide per day from its exhaust. That is about 90 percent of all the carbon dioxide the plant produces.

Another zero-emission technique is known as Bio Energy with Carbon Capture and Sequestration (BECCS). It involves growing crops, burning them to generate electricity, capturing the carbon dioxide emitted during combustion and storing it deep down into the Earth’s crust. Eventually, over the course of millennia, it is converted into carbonate rocks.

Clearly, BECCS obviates the need to extract fossil fuels, thus closing the carbon loop and enabling carbon neutrality by replacing fossil fuel with crops. There are about two dozen BECCS pilot projects operated by multi-national companies like Shell, Chevron and Archer Daniels Midland (ADM). Since 2011, ADM has been sequestering about a million tonnes of carbon dioxide per year.

At Sandia National Laboratories in Albuquerque, New Mexico, scientists are working on applying concentrated sunlight to the captured carbon dioxide to initiate reactions that yield carbon monoxide, hydrogen and oxygen. Because carbon monoxide and hydrogen are the basic chemical building blocks of synthetic fuels, they call this process “sunshine to petrol”. Indeed, researchers have demonstrated that 75 percent of the carbon dioxide captured from the air can be converted into methanol. This shows that the main culprit of global warming can be recycled into useful products. Moreover, production of these carbon-recycled products would be carbon neutral or carbon negative.

Billions of tonnes of carbon dioxide could also be captured by rocks via a natural chemical reaction and permanently stored in an environmentally benign form, according to researchers at Columbia University in New York and the US Geological Survey. They found that when a rock, known as Peridotite, comes in contact with carbon dioxide, it converts the gas into harmless minerals such as calcite. This process is known as “carbon sequestration by mineral carbonation”. They have also worked out a way to “grow enough of the [rock] to permanently store two billion or more tonnes of carbon dioxide annually.”

Peridotite is exposed at the surface in many places on Earth. It is abundant on all the continents, except perhaps Antarctica. In Oman, this naturally occurring rock is sequestering about 100,000 tonnes of carbon dioxide each year. That is enough to soak up carbon dioxide emissions from burning more than 35 million litres of gasoline.

A power plant in Iceland that uses hot water from geothermal steam, which contains carbon dioxide, removes the gas from the steam and injects it into a volcanic rock called basalt. The rock reacts with carbon dioxide to form carbonate minerals in less than two years. Ongoing research suggests that this technique could be used to convert huge amounts of carbon dioxide into “rocks” and stow them underground.

Recently, De Beers—the world’s largest diamond producer—announced that it would start a pilot project in South Africa designed to create the world’s first carbon-neutral mine. Essentially, De Beers would inject carbon dioxide into kimberlite, an ore containing diamonds, where the two will combine to form a solid compound. The project is due to start sometime next year.

Although the idea of carbon dioxide absorption by rocks is still in the embryonic stage, the silver bullet to keep our planet’s climate under control might be the rocks right under our feet. Until the technology to utilise these rocks is fully developed, DAC, CCS and BECCS will need to be a significant part of any realistic plan to assuage the effects of climate change while simultaneously mitigating the cause. Otherwise, we may soon be entering a new geologic era, which could be termed the “Anthropocene Era”, one where the climate is very different from the one our ancestors knew.

The author, Quamrul Haider, is a Professor of Physics at Fordham University, New York.

Advanced science, Astrophysics, Environmental, Technical

How global warming is impacting on Earth’s spin

Anthropogenic greenhouse gas emissions might be affecting more than just the climate. For the first time, scientists at NASA presented evidence that the orientation of the Earth’s spin axis is changing because of global warming.

global_warming_1[1]The Earth spins from west to east about an axis once every 24 hours, creating the continuous cycle of day and night. The north-south spin axis runs through the North and South Poles and is tilted by 23.5 degrees from the vertical. The axial tilt causes almost all the seasonal changes.

But the tilt is far from constant. It varies between 21.6 and 24.5 degrees in a 41,000-year cycle. This variation together with small fluctuations in the Sun and Moon’s gravitational pull, oblate shape and elliptical orbit of the Earth, irregular surface, non-uniform distribution of mass and movement of the tectonic plates cause the spin axis, and hence the Poles, to wobble either east or west along its general direction of drift.

Until 2005, Earth’s spin axis has been drifting steadily in the southwest direction around ten centimetres each year towards the Hudson Bay in Canada. However, in 2005, the axis took an abrupt turn and started to drift east towards England at an annual rate of about 17 centimetres, according to data obtained by NASA’s Gravity Recovery and Climate Experiment satellites. It is still heading east.

After analysing the satellite data, scientists at NASA’s Jet Propulsion Laboratory in California attribute the sudden change in direction of the axis mainly to melting of Greenland’s ice sheets due to global warming. The reason: Melting of ice sheets and the resulting rise of the sea level are changing the distribution of mass on Earth, thereby causing the drift of the spin to change direction and become more oblique. The axis is particularly sensitive to changes in mass distribution occurring north and south of 45 degrees latitude. This phenomenon is similar to the shift in the axis of rotation of a spinning toy if we put more mass on one side of the top or the other.

Since 2002, ice sheets of Greenland have been melting at an annual rate of roughly 270 million tonnes. Additionally, some climate models indicate that a two-to-three degrees Celsius rise in temperature would result in a complete melting of Greenland’s ice sheets. If that happens, it could release the equivalent of as much as 1,400 billion tonnes of carbon dioxide, enhancing global warming even further. It would also raise the sea level by about 7.5 meters. By then, the wobbling of the Poles would also be completely out of whack.

The ice in the Arctic Ocean has also decreased dramatically since the 1960s. For every tonne of carbon dioxide released into the atmosphere, about three square meters of Arctic’s ice were lost in the last 50 years. This reflects a disquieting long-term trend of around ten percent loss of ice per decade. Furthermore, Antarctica is losing more ice than is being replaced by snowfall. The influx of water from the melting of ice of the Arctic Ocean and Antarctica together with the melting of glaciers and the subsequent redistribution of water across the Earth is also causing our planet to pitch over.

What does this mean for us? Although something as small as we humans shook up something as massive as the Earth, it won’t turn upside down as long as the Moon, which acts as a stabiliser of the Earth’s spinning motion, stays in the sky as our nearest neighbour. However, if the shift of the spin axis maintains its present rate and direction, then by the end of this century, the axis would shift by nearly 14 meters. Such a large shift will have devastating consequences for climate change and our planet.

The orientation of the Earth’s spin axis determines the seasonal distribution of radiation at higher latitudes. If the axial tilt is smaller, the Sun does not travel as far north in the sky during summer, producing cooler summers. A larger tilt, as could be in the future, would mean summer days that would be much hotter than the present summer days. In addition, it would impact the accuracy of GPS and other satellite-dependent devices.

Since global warming is causing the Earth’s mass to be redistributed towards the Poles, it would cause the planet to spin faster, just as an ice skater spins faster when she pulls her arms towards her body. Consequently, the length of a day would become shorter.

Our biological clock that regulates sleeping, walking, eating, and other cyclic activities is based on a 24-hour day. Faced with a shorter day, these circadian rhythms would be hopelessly out of sync with the natural world. Moreover, a rapidly spinning Earth will be unstable to the extent that the Poles would wobble faster. This would create enormous stress on the Earth’s geology leading to large-scale natural disasters that will most likely be disastrous for life on Earth.

We may not witness the effects of a rapidly spinning Earth by the end of this century or the next. Nevertheless, the effects will be perceivable a few centuries from now if the global temperature keeps on rising and the ice sheets keep on melting in tandem.

The shift in the Earth’s spin axis due to climate change highlights how real and profoundly large impact humans are having on the planet. The dire consequences of the shift in the axial tilt towards a larger obliquity, as noted above, is not a wake-up call, but an alarm bell. There is still time for our leaders to listen to the scientists and formulate a long-term approach to tackle the problem of climate change instead of a short-term Band-Aid approach, as outlined in the 2015 Paris Agreement, which will see us through only to the end of this century. Therefore, our foremost goal before the death knell should be to reverse global warming, or at the least, to stop further warming instead of limiting it to 1.5-degree in the next 75 years or so.

The author, Quamrul Haider, is a Professor of Physics at Fordham University, New York.