Advanced science, Astrophysics, Life as it is, Religious, Technical

Everything from Nothing

Can everything we see on earth and the planets, the stars, galaxies, supernovae and so forth come from nothing, from absolute vacuum, from empty space and can even empty space prop up from nowhere? This sort of query, some might say, is an absurd baseless query; while others might say it is a profound scientific inquiry, beyond the pigeon-holed mode of thinking.   

Philosophers and theologians of all persuasions tried to convince us that everything we see in the universe is the divine creation. But we must set off with certain fundamental assumptions – we have to accept the existence of an all-powerful, omnipresent, omniscient entity called God or Yahweh or Allah and we cannot question his origin, his present whereabouts or his mode of creation etc. Based on these premises, the revelations, directives etc as stated in the ‘Book’ should be followed as ordered by the creator!   

But science is unwilling to accept this premise without any evidence or verification. That is why there is a conflict between science and religion. As Richard Dawkins, Emeritus Fellow of New College, Oxford and Evolutionary Biologist said, “I am against religion because it teaches us to be satisfied with but not understanding the world”.

Science had moved away from accepting the divine proclamation that human beings are at the centre of creation of the creator, Earth is at the centre of the universe and the Sun goes around the Earth! Scientific discoveries have proved many of these proclamations, if not all, are blatantly wrong.

Science explored material objects on Earth – day-to-day objects to their physical and chemical composition, physical objects to molecules to atoms and sub-atomic particles. On the smallest scale, quantum mechanics explored the origin of matter and anti-matter and on the mind-boggling expansive scale of the universe the general theory of relativity explored the stars, galaxies, black holes, warm holes, universe and even multi verse.

The theologians would burst out in fury if someone, be it scientist or a science writer, tries to give the scientific explanation of something or everything coming from nothing. They would throw out their anger, what is then the omnipresent omniscience divine power called God or Yahweh or Allah doing? Is He not the undisputed Creator of everything in this universe? For centuries the religions had been proclaiming and propagating this message relentlessly. Now any attempt to explain it otherwise, on the basis of scientific ideas and theories, would be branded as heretics and atheism.

Nonetheless science has progressed enough to give a rational explanation to the creation of everything from nothing. But, first, we must understand the scientific meaning of the term ‘nothing’. In everyday language, nothing means the absence of anything. If we consider a volume of space say, 20cm by 20cm by 20cm, in front of our eyes, we may say there is nothing in there as there is no book, no pencil, no string, no fruit or anything else in that small volume and so, we may consider, there is nothing. But then, we must recognise that there are millions of air particles of various types in that volume that we cannot see but we breath all the time. So, there are things where we perceive to have nothing.

Let us take an air-tight glass case where obviously there are air particles along with air pollutants, allergens etc. Now if we pump out these particles very carefully and make it an ultra-high vacuum, can we say that there is nothing in the glass case? No, we cannot say that there is nothing in the glass case and that is because the modern physics shows us otherwise.

Quantum fluctuations in an absolute vacuum

The two branches of modern physics – the general theory of relativity and quantum mechanics – give us a description of physical processes which are mind-boggling, counter-intuitive and occasionally plainly weird. Even Einstein, who singlehandedly produced the general theory of relativity and pioneered quantum physics, had extreme difficulty in absorbing the full implications and interplay of these two theories.

Einstein produced the mass-energy equivalence, which is: E=mc2; a very elegant and at the same time extremely important equation. What it means is that the mass of an object such as an atom or a molecule or a large number of molecules in a ball or an apple or a pencil and so forth has an equivalent energy and conversely an amount of energy has an equivalent mass. It is not theoretical physicists’ crazy idea, it had been found in practice in particle physics experiments, in radioactive decay and in nuclear reactors. A certain amount of energy suddenly disappears and a very small particle called electron and its anti-particle called the positron appear. The electron is what we use to generate electricity and is used to run a television, radio, mobile phone etc and in our everyday parlance, it is a matter. On the other hand, positron is an anti-matter. When this matter (electron) and anti-matter (positron) come in contact, they annihilate each other and an amount of energy is produced which is exactly equal to what disappeared in the first place to produce this electron and positron pair.

Alongside this mass-energy equivalence, one may consider quantum physics’ uncertainty principle produced by Werner Heisenberg. We must remember that quantum mechanics deals with very small particles such as electrons, positrons, atoms and sub-atomic particles. The basic tenet of this principle is that we cannot simultaneously measure certain pairs of observables such as energy and time or position and momentum of a particle with absolute accuracy. The degree of inaccuracy or uncertainty of the pair of observables (ΔE.Δt or Δp.Δx is always higher than a quantity called Planck constant (h/2π). In other words, if we measure the energy of a quantum particle very precisely, then there would be an inherent uncertainty in time at which the energy measurement had been made and the product of these two uncertainties is going to be higher than the Planck constant, h/2π. This uncertainty principle is the bedrock of quantum mechanics. It had been proven time and time again that this uncertainty principle is inviolable and holds true in all quantum events. Heisenberg received Nobel Prize in Physics in 1932 for his contribution to Quantum Mechanics.

In the sub-world of quantum mechanics, there may be a situation which is known as quantum fluctuation. In an otherwise complete vacuum (having nothing), a quantum fluctuation can produce an amount of energy and that energy can generate a virtual electron-positron pair in the system. Now that energy comes from the nature, as if the nature is lending that energy to the system. When the electron-positron pair comes in contact with each other and they do it in a flash, both of them disappear instantly, and an amount energy is produced (equal to the energy that produced the pair in the first place) and that energy is returned to the nature and everything is squared up.

This borrowing of energy from nature, electron-positron pair formation (or for that matter matter-antimatter formation) and annihilation and then returning the energy to the nature are taking place all the time everywhere, even in a vacuum where we consider there is absolutely nothing. These are the quantum fluctuations. These are not mad professor’s or mad scientist’s utter gibberish, these are actual physical phenomena which have been demonstrated in high-energy physics laboratories. If one measures the charge of an electron with high precision, one can find a sudden fluctuation in the charge of the electron or a slight wobble in the electron trajectory. This is due to interaction of the real electron and the momentary appearance of the electron-positron pair.  

Billions and trillions of matter-antimatter particles are being generated and annihilated all the time in space. Now a situation may arise when a small fraction of these particles is not annihilated instantaneously and these matter, anti-matter particles move away from each other. In fact, it had been estimated that approximately one in a billion of such pairs had escaped annihilation and moved away to lead separate lives at the time of Big Bang. Electrons and other matters (atoms) in our everyday world (called fermions) came out and formed our world or the present universe, and the positrons and other anti-matter particles formed the anti-matter world somewhere far away from matter world, or they may have formed a separate anti-matter universe.

Our matter universe and the anti-matter universe are blood enemies. Should they come in contact, they will kill each other instantly and an unimaginable release of energy will take place. However, this energy is what these matter universe and anti-matter universe owe to the nature, because this energy was borrowed at the time of forming matter and anti-matter particles in a gigantic scale. Whereas all the other particles returned their energies to the nature, these particles, statistically one in a billion particles, escaped repayment and formed the universe.

The Big Bang from quantum fluctuations

This is how the universe, as perceived now, came into existence. It is the formation of universe out of nothing and the likely disappearance of the universe to nothing. There is no need to invent a divine power and then lay everything at the feet of that invented divine power. In fact, such an invention, all within the confines of our minds, would create more insurmountable problems in explaining things as they stand – such as where is the divine power now, how did he create these things, did he create the universe on a whim or did he have an ultimate purpose etc?

Albert Einstein was deeply sceptical about the divine power. He expressed his thought quite bluntly in saying, “I want to know how God created this world, I am not interested in this or that phenomenon, in the spectrum of this or that element. I want to know His thoughts; the rest are details”.  

It must be stated that the present perception of creation of the universe is not a done deal. The debate about the universe, its progression, its ultimate fate etc are all raging in the scientific community. This is the credit for science – science never claims to have achieved the ultimate truth; anything that is held to be true now can be changed in the light of new evidence, new facts. This is in stark contrast with religion where everything is claimed to have come from God or Allah and hence not subject to any alteration or modification. This is what science rejects.

  • Dr A Rahman is an author and a columnist.